- 签证留学 |
- 笔译 |
- 口译
- 求职 |
- 日/韩语 |
- 德语
表1 每部电影的打斗镜头数、接吻镜头数以及电影评估类型
即使不知道未知电影属于哪种类型,我们也可以通过某种方法计算出来。首先计算未知电影与样本集中其他电影的距离,如表2所示。此处暂时不要关心如何计算得到这些距离值,使用Python实现电影分类应用时,会提供具体的计算方法。
表2 已知电影与未知电影的距离
现在我们得到了样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到k个距离最近的电影。假定k=3,则三个最靠近的电影依次是He's Not Really into Dudes、Beautiful Woman和California Man。k-近邻算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。
此处讲解如何在实际环境中应用k-近邻算法,同时涉及如何使用Python工具和相关的机器学习术语。按照开发机器学习应用的通用步骤,我们使用Python语言开发k-近邻算法的简单应用,以检验算法使用的正确性。
k-近邻算法的一般流程
(1)收集数据:可以使用任何方法。
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3)分析数据:可以使用任何方法。
(4)训练算法:此步骤不适用于k-近邻算法。
(5)测试算法:计算错误率。
(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
责任编辑:admin