会员中心 |  会员注册  |  兼职信息发布    浏览手机版!    天猫爆款“蟹”礼!!    人工翻译 留言板 | RSS订阅 | 设为首页 | 加入收藏  繁體中文
当前位置:首页 > 翻译新闻 > 综合报道 > 正文

机器翻译与人工翻译之争

发布时间: 2019-07-16 15:25:02   作者:林杨琼   来源: 中国社会科学网   浏览次数:
摘要: 机器翻译发展十分迅猛,但对于机器翻译与人工翻译孰优孰劣、机器翻译能否取代人工翻译,一直存在争议。



  机器翻译是指利用计算机把一种自然语言翻译成另一种自然语言的技术,是一门结合了语言学和计算机科学等学科的交叉学科。认知智能是人工智能的最高阶段,自然语言理解是认知智能领域的“皇冠”。机器翻译这一自然语言处理领域最具挑战性的研究任务,则是自然语言处理领域“皇冠上的明珠”。近年来,机器翻译发展十分迅猛,但对于机器翻译与人工翻译孰优孰劣、机器翻译能否取代人工翻译,一直存在争议。机器翻译之父韦弗曾提出“翻译即解码”的结构主义观点,但是,数年之后,他自己又推翻了这一论断,表示“机器成不了普希金,机器翻译永远都无法传达出语言本身的优雅与格调”。


  机器翻译发展迅速


  语言能力是区分人类和动物的重要特征之一,是人类有效交流的保证。用机器来进行语言翻译的想法,最早可追溯到古希腊时期。现代意义上的“机器翻译”一词,由古图拉特(Couturat)和洛(Leau)1903年在《通用语言的历史》一书中最早提出。1949年,韦弗发表了具有广泛影响力的名为《翻译》的备忘录,正式提出了机器翻译的思想。直到2006年Hinton提出深度学习技术,才为实现这一目标提供了更好的解决途径。目前的前沿技术是基于人工神经网络的机器学习,其技术核心是一个拥有海量节点(神经元)的深度神经网络,可以自动地从语料库学习翻译知识。一种语言的句子被向量化之后,在网络中层层传递,转化为计算机可以“理解”的表示形式,再经过多层复杂的传导运算,生成另一种语言的译文。


  2015年,蒙特利尔大学引入注意力机制,使得神经机器翻译达到实用阶段。此后,神经机器翻译不断取得进展。2016年,谷歌GNMT发布,该系统可模仿人脑的神经思考模式,翻译出与人工翻译相媲美的译文。同年,微软在Switchboard对话语义识别达到人类水平,讯飞上线NMT系统,神经机器翻译开始被大规模应用。科学杂志Nature梳理了2016年科技领域的十大突破,排在首位的就是人工智能,其中提及人工智能的机器翻译使错误减少了约60%。随后,Facebook的人工智能研究团队开发了一种新的神经机器翻译算法,在三种机器翻译任务上得分高于所有同类系统。2017 年,微软在斯坦福问答数据集 SQuAD 上达到人类水平。机器翻译的发展速度远远超出人们的想象,但是对于机器翻译是否能够真正完全代替人工翻译,学界仍旧争论不休。


  机器翻译取代人工翻译


  目前而言,一部分专家认为机器翻译很快会达到人工翻译水平,在不远的将来会完全取代人工翻译。2010年,谷歌机器翻译专家欧赫认为文本机器翻译是合理有效的,真正的挑战只在语音识别方面。他提出,未来几年即有可能实现手机端语音到语音的自动翻译。2019年2月《卫报》刊登《机器翻译的时代是否已经到来》一文,美国韦弗利实验室(Waverly Labs)的安德鲁·奥乔亚表示“在未来十到十二年内,机器翻译技术可与人工翻译相媲美,甚至超过人工翻译的水平”。



微信公众号

[1] [2] [3] [下一页] 【欢迎大家踊跃评论】
我来说两句
您尚未登录,请登录后发布评论! 【马上登录
评论列表
已有 0 条评论(查看更多评论)

外语课程

翻译新闻

翻译书籍